problème de maths ! urgent!

problème de maths ! urgent! - Loisirs - Discussions

Marsh Posté le 22-11-2004 à 16:10:54    

houlala mon prof de maths vient de me donner un problème à faire, il est super compliqué alors je demande votre aide !!! merci beaucoup!  
 
Le premier but de ce devoir est de démontrer que le nombre réel √n, où n est un entier naturel, est toujours irrationnel, sauf bien sûr dans les cas où l’entier n est le carré d’un entier. Ce théorème peut être démontré de multiples manières ; la plus élémentaire, celle que nous allons découvrir ici, est due au grand mathématicien allemand Richard Dedekind, qui l’a donnée dans un livre qui a eu un impact énorme dans l’histoire des mathématiques, parce que pour la première fois un mathématicien y donnait une définition rigoureuse des nombres réels, et y perfectionnait la notion de grandeur continue donnée dans l’Antiquité par Aristote.  
 
Commençons par une définition. La partie entière d’un nombre réel x est le nombre entier immédiatement inférieur ou égal à x ; on la note [x]. Ainsi par exemple, [1,4]= 1 ; [√13]=3 ou encore [2]=2.  
Remarquons que de façon générale, on a l’encadrement : [x]< x <[x]+1 ; et que de plus pour avoir x= [x], il faut et il suffit que le nombre x soit entier : dans tous les cas où il ne l’est pas, on a [x]<x.  
Revenons maintenant à la démonstration annoncée. Comme dans beaucoup de démonstrations d’irrationalité, on commence par supposer que le nombre considéré est rationnel, puis on en déduit une contradiction, et on conclut qu’en réalité, le nombre était irrationnel : on effectue ainsi un raisonnement par l’absurde.  
On suppose donc, dans tout ce qui suit, que n n’est pas un carré, de telle sorte que le nombre √n n’est pas entier, mais qu’en revanche le nombre √n est rationnel. On écrit alors √n = u/v où u et v sont deux entiers positifs premiers entre eux. La fraction u/v étant irréductible, ne peut plus être simplifiée ; en particulier le dénominateur a une valeur minimale.  
 
1. Considérons un entier positif k quelconque ; comme par hypothèse √n n’est pas entier, la différence racine de n-k est non nulle.  
Justifier alors que : √n = n – k√n / √n – k  
En déduire l’égalité : √n = nv – ku / u – kv  
 
2. On pose maintenant k=[√n].  
3. Démontrer que 0 < u – kv <v  
4. En déduire une contradiction avec l’hypothèse faite au point de départ du raisonnement. Conclusion ?  

Reply

Marsh Posté le 22-11-2004 à 16:10:54   

Reply

Marsh Posté le 22-11-2004 à 16:12:34    

Conclusion : les maths c'est loin je devrais m'y remettre, j'ai rien compris


---------------
- C'est curieux chez les marins ce besoin de faire des phrases
Reply

Marsh Posté le 22-11-2004 à 16:22:53    

Citation :

Justifier alors que : √n = n – k√n / √n – k  
En déduire l’égalité : √n = nv – ku / u – kv  

Tu peux mettre les parenthèses stp (meme si elles sont inutiles, sur un pc c'est pas très clair pour moi)?

Reply

Marsh Posté le 22-11-2004 à 16:24:11    

Y'a pas une catégorie aide au devoirs sur ce forum ??? :whistle:


---------------
Excel est mon ami pour la vie - http://marion.chtitemouss.net/
Reply

Marsh Posté le 22-11-2004 à 16:25:31    

crapaudine a écrit :

Y'a pas une catégorie aide au devoirs sur ce forum ??? :whistle:

puis le modo il devrait répondre a tout les questions

Reply

Marsh Posté le 22-11-2004 à 16:25:40    

pas d'aide aux devoirs, je crois que c'est ce que vont dire les modos...


Message édité par m-power-bmw le 22-11-2004 à 16:25:55

---------------
Topik bagnoles*-*IMCDB*-*Combattez la brute
Reply

Marsh Posté le 22-11-2004 à 16:27:09    

y a un topic math en plus :o

Reply

Marsh Posté le 22-11-2004 à 16:27:26    

crapaudine a écrit :

Y'a pas une catégorie aide au devoirs sur ce forum ??? :whistle:


 
Si, mais elle n'est pas visible de la racine donc on lui pardonne pour cette fois.
 
Bab003, merci de te rendre en catégorie Emploi/Etudes, sous-catégorie Aide aux Devoirs :)


---------------
Une femme qui se fout de la procréation, c'est le Saint Graal de toutes les bites du monde (BriseParpaing) - Moeagare, Gundam !
Reply

Marsh Posté le 22-11-2004 à 16:27:33    

jesper kils vont rien dir, jy arrive vraimen pa!!!  
sinon pour agreuh √n = (n – k√n) / (√n – k)  
√n = (nv – ku) / (u – kv)

Reply

Sujets relatifs:

Leave a Replay

Make sure you enter the(*)required information where indicate.HTML code is not allowed